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The primary aim of network tomography is to infer properties of net-

works from network traffic measurements. Internet traffic mainly consists of

flows of packets that belong to World Wide Web accesses, file transfers, and

e-mail, whose transmissions are mediated via the Transmission Control Proto-

col (TCP). TCP flow records, or non-intrusive, flow level measurements, can

be collected by the state-of-the-art networking equipment.

In this dissertation, I develop a methodology to process TCP flow

records to analyze throughput correlations among TCP flow classes. Through-

puts of TCP flows that share resources in the network are correlated. These

correlations can be used to infer resource sharing in the Internet. My proposal

for using flow level measurements to infer network properties differs signifi-

cantly from previous network tomography research that has employed packet

level measurements for making inferences.
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In this work, I develop a sampling strategy for random processes (flow

class throughputs) whose samples are taken when the processes are active at

the sampling instant. The samples are used to estimate a flow class throughput

correlation matrix. Factor analysis is then employed to investigate the correla-

tion structure of TCP flow throughputs and to explore which TCP flow classes

might share congested resources. A number of empirical studies are conducted

to evaluate the effect of filtering out small or large sized flows on correlation

estimates. Bootstrap methods are coupled with exploratory factor analysis to

make inferential statements about resource sharing. The applicability of the

methods to real datasets is also validated.

Possible applications of the methodology introduced in this dissertation

include network monitoring and root cause analysis of poor performance. The

methods will have a potential impact on service providers who wish to analyze

network performance using flow level measurements. The methodology may

also be integrated into the design of future network monitoring equipment and

software to perform an off-line evaluation of the congestion status of networks.
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Chapter 1

Introduction

In today’s competitive network service provider market, it is critically

important to detect when users experience poor quality of service. Such de-

tection is possible only through effective monitoring of network traffic. Some

of the traffic characteristics that are usually monitored include the number of

packets dropped at a router over time, the utilization levels of a link, the de-

lay experienced between consecutive packets destined for a given user, and the

overall delay experienced by a user when downloading Web documents. Al-

though a number of hardware devices and software tools have been developed

to monitor and collect information about network traffic, a well-established

methodology for analyzing the voluminous amounts of collected information

is not available. Root cause analysis of poor network performance, fault and

misconfiguration detection, and postmortem tracing of intrusions or denial of

service attacks using the data collected by monitoring tools and devices remain

challenging problems for network engineers and researchers.

In addition to the voluminous amounts of collected information, an un-

derstanding of the cause for poor network performance is complicated by the

fact that network managers generally have information only about their net-
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work domain, and have little or no knowledge about the properties of the other

domains. Network tomography research aims to develop methods for inferring

external network characteristics (such as link loss rates, link delays, link uti-

lizations, and routing topologies) using network measurements collected either

by actively sending probe packets into the network or by passively monitor-

ing packets at a site. Much of previous network tomography research makes

inferences based on packet level characteristics such as the number of packets,

packet loss, and packet delay [1–7].

1.1 Inference of Resource Sharing in the Internet

In this dissertation, I address a fundamental network tomography prob-

lem that has been identified by Internet service providers (ISPs) and content

providers (CPs), and involves determining classes of network flows that share

congested resources. Currently, congestion in the Internet might arise due to

an overloaded server, an overutilized customer access link, or a link failure

or misconfigured routing in the carrier’s backbone. Determining which net-

work flows might share congested resources in the Internet is usually difficult

without access to the complete routing information for the network.

By inferring which classes of network flows share congested resources

using only local measurements and flow attributes (e.g. source/destination ad-

dresses of communicating end systems), service providers might perform load

balancing of traffic that share a common bottleneck onto disjoint routes. For

instance, upon inferring that two customers or customer bases are experienc-
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ing poor Web performance due to a bottleneck link serving them, the provider

of the Web content might choose to replicate content at a second location

to reduce the load on the bottleneck link. From a customer’s perspective,

determining whether a network provider uses a diverse set of routes (which

is an indication of robustness) when carrying different classes of flows to the

customer may be valuable, especially since network providers are unwilling to

disclose their backbone topology. In this case, inferring that none of the flows

share a congested resource might indicate such routing diversity. Identifying

a shared congested resource can also be used to determine from where mali-

cious flows are coming (e.g. in postmortem intrusion detection). Even if source

addresses were being spoofed, one might still infer with which other flows in-

truder flows share resources so as to approximate the location of misbehaving

hosts.

1.2 Taxonomy of Network Measurement Methods

Network traffic monitoring can be performed by taking two different

kinds of measurements, namely passive measurement or active measurement.

I briefly summarize these measurement strategies and their respective advan-

tages and disadvantages.

In passive measurement, the network information is collected based

only on the existing network traffic. Passive measurements generally involve

running an agent, or specialized software, on a network node to collect informa-

tion about the traffic traversing that node. Sometimes, “in-band” information

3



can be embedded in the traffic so as to measure certain network performance

characteristics. Examples of such in-band information are a time stamp and

a sequence number in each data packet. Popular tools for collecting passive

measurements include Simple Network Management Protocol (SNMP), Re-

mote Monitoring (RMON) [8], and NetFlow [9].

On the other hand, active measurements involve end systems inject-

ing additional probe traffic into the network towards specified destination end

systems in order to be able to measure network performance characteristics.

Examples of popular active measurement tools are the commonly available

Unix tools: ping, traceroute, mtrace, and pathchar [10]. Multicast-based

Inference of Network-internal Characteristics (MINC) research [3, 6] also fo-

cuses on employing active, end-to-end measurements for network tomography.

An advantage of passive measurements is that no additional bandwidth

is wasted by the probe traffic. In general, only privileged users may access the

measurements collected by monitoring agents. However, such an approach

prevents exposing critical network infrastructure information to the outside

world. Passive measurements are usually exported to a data warehouse for

further processing.

Active measurements can be performed on-demand by any end system

without involvement of internal network nodes. Such measurements are very

useful in characterizing user perceived performance such as end-to-end con-

nectivity, round trip packet delay, and packet loss along network routes. Some

end-to-end measurement methods may also depend on internal network sup-
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Table 1.1: Taxonomy of network measurement methods.

Advantages Disadvantages Examples
Passive No probe traffic re-

quired, secure
Measurements avail-
able to privileged
users only, internal
network nodes per-
form measurements

SNMP, RMON,
NetFlow

Active Measurements avail-
able to end systems
on demand

Probe traffic over-
head, support from
internal network
nodes and multicast
capability may be
necessary

MINC, mtrace,
pathchar, ping,
traceroute

port. For example, ping and traceroute require that each router on a probe

packet’s route respond with an Internet Control Message Protocol (ICMP)

[11] reply. The cooperation of a number of receivers and senders is gener-

ally necessary in order to be able to collate end-to-end measurements in the

analysis of network performance characteristics. The major disadvantage of

active measurements is the lack of scalability: As the number of end systems

increases, probe traffic grows exponentially.

Table 1.1 summarizes the advantages and disadvantages of each mea-

surement approach. In general, a network monitoring strategy should employ

a combination of both approaches whenever possible.

5



1.3 Related Work

The simplest approach to detecting shared resources is to use a utility

such as traceroute that tracks the route that a packet follows from its source

to its destination. Such utilities, however, require the cooperation of routers

in the network on the path of the flow. Owners of the carrier networks are

often unwilling to provide information about their networks, and hence, the

use of such utilities is not always viable. Savage, Cardwell, and Anderson [12]

describe a “locality” based approximation for detecting shared paths by look-

ing at the destination addresses of flows. Their approximation is based on

the fact that flows destined to a particular host or network address generally

follow the same path, and hence visit the same bottleneck in the network.

Harfoush, Bestavros, and Byers [13] use packet-pair probing for deter-

mining whether two flows originating from the same source share a bottleneck.

Their technique is based on correlating end-to-end packet loss measurements

to identify flows that share “similar network conditions”. The main disadvan-

tage of their technique, in addition to being dependent on packet level probing,

is the requirement of cooperating senders.

Rubenstein, Kurose, and Towsley [14] develop an end-to-end technique

based on packet loss or delay observations to infer whether or not two flows

are experiencing congestion on a common set of network resources. Their

methodology is based on the observation that losses or delays experienced

by two packets passing through the same bottleneck exhibit some degree of

positive correlation. A major shortcoming of this approach is the prohibitive

6



computational cost to correlate packet level measurements. Moreover, the

technique assumes that the flows share a common endpoint; i.e., either the

sources or the destinations of packets are co-located and collaborating, which

has limited applicability.

Rabbat, Nowak, and Coates [15] propose sending packet probes from

two sources to infer whether a subgraph of a graph formed from the paths

connecting two sources to two receivers is shared. The methodology is based

on the assumption that probe packets arrive at a receiver in the order in which

they reach the node where paths from two sources join. In addition to being

based on a packet level approach, the method is limited to two sources and a

generalization to more than two sources may not be scalable.

Katabi, Bazzi, and Yang [16] develop iterative techniques that mini-

mize entropy-based cost functions to cluster flows that share a bottleneck into

groups. Their method is based on the observation that correct clustering min-

imizes the entropy of inter-packet spacing within clusters with an empirical

distribution measured by an observer. The main advantage of their method

is that it does not require sending probe traffic into the network and does not

require cooperating senders; i.e., it is passive. However, they also indicate that

their technique is robust only when the observer can monitor a large fraction

of the traffic from the bottleneck link, and hence is not practical when the

observer is an end-receiver.

My work on inferring resource sharing differs significantly from the

previous work in that I consider flow level instead of packet level statistics.
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Packet level Internet Protocol (IP) traffic is data intensive to collect and store

for subsequent analysis. In addition, packet level characteristics of IP traffic

are complex to analyze due to their extreme variability over a wide range of

time scales [17]. Although methods based on packet level measurements are

invaluable in inferring packet round trip times and loss rates along network

routes, flows may provide a suitable, alternative measurement basis for infer-

ring congested resource sharing. Flows are defined for longer time scales, and

hence better capture congestion dynamics in the network and the performance

perceived by end-users of “document” traffic, i.e. Web transfers, file transfers,

and e-mail. I rely on passive measurements made at a network node (e.g.,

router, gateway, or server), although it is possible to take an active approach

by sending probe flows into the network. Furthermore, while many other pre-

vious methods that infer resource sharing are limited to determining whether

particular flow class pairs share bottlenecks, the method developed in this

dissertation considers a set of flow classes simultaneously.

1.4 Flows, Flow Records, and Flow Classes

I employ a flow level performance measure, throughput, which is directly

available from state-of-the-art network monitoring tools, in order to infer which

network flow classes share congested resources. Since network flows are the

main interest in this work, I first define flows, flow records, and flow classes.

Although there is no standard definition of a flow, a commonly accepted def-

inition of an IP flow is a unidirectional sequence of packets, which are close

8



to each other in time and share a common identifier such as a common source

and destination address [18]. For instance, packets corresponding to a file

download constitute a flow.

The state-of-the-art networking equipment that runs traffic monitoring

tools (such as NetFlow [9], sFlow [19], and Argus [20]) is capable of generating

flow records. A flow record contains the source and destination IP addresses,

Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) port

numbers, IP protocol type, type of service fields in IP headers, start and end

times, and the number of packets and bytes in a flow. A major problem in flow

measurement is the lack of scalability: At very high speed routers, the number

of flows to be measured might easily exceed millions per hour. Therefore, at

high link speeds, the flows [21] and/or the packets within a flow [22] may be

sampled in order to keep up with the link speeds. The network node, such as

a router, performing record generation usually exports these records to a data

warehouse for further processing.

I define an IP flow class as a collection, or aggregation, of flows that

have a common attribute. For example, we can refer to all flows sharing

common source and destination IP address prefixes as a flow class. A Web

browsing session, in which a user visits a number of pages at a Web site and

triggers a number of object downloads at each page, generates flows that may

be treated as a flow class.
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Table 1.2: Acronyms.

AP Access Point
BCa Bias-Corrected and Accelerated
BSS Basic Service Set
CP Content Provider
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CWND Congestion Window
FTP File Transfer Protocol
ICMP Internet Control Message Protocol
IP Internet Protocol
ISP Internet Service Provider
M/GI/1-PS Single-server processor sharing queueing system with an

exponential interarrival time distribution and a general,
independent service time distribution

MINC Multicast-based Inference of Network-internal Characteristics
OC Optical Carrier
RMON Remote Monitoring
RTT Round Trip Time
SNMP Simple Network Management Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
WLAN Wireless Local Area Network

1.5 Acronyms

Table 1.2 lists some acronyms, most of which are related to networking.

These acronyms will be used throughout this dissertation, and are included

here for easy reference.
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1.6 Contributions and Organization of the Dissertation

A significant portion of the IP traffic consists of packets from elastic

flows [23] or “document” traffic, i.e. Web transfers, file transfers (FTP), and

e-mail, whose transfers are mediated via TCP (see for example, [24]). In this

work, I will exclusively consider TCP flows and all references to flows and flow

classes will imply TCP flows and flow classes. TCP uses packet delay and

loss as indicators of the available bandwidth to adjust the data transmission

window at the sender. Note that capturing this dynamic adjustment of data

transmission window from flow records is not possible. Such capture could only

be possible by continuously monitoring the data transmission windows of end

systems, and would be prohibitively expensive. However, TCP flow through-

puts that are available from flow records enable one to infer the congestion

status of the network the flows visit.

One key observation in this work is that end users of elastic flows that

are temporally overlapping long enough on the same congested resource tend

to perceive high quality of service or low quality of service together. In my

context, user perceived quality of service is related to the throughput of a

flow, i.e., the size of the flow divided by the response time of the flow. This

association of quality of service perceived by users directly translates into a

positive correlation among flow throughputs that share congested resources.

While the existence of such correlations is intuitive, their extent needs to be

quantified, especially when flow classes visiting multiple resources can intro-

duce throughput correlations among flow classes that do not necessarily share
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congested resources. I will term the inference of resource sharing based only

on measurements collected at one site and the attributes of flows as a “black

box” approach [25–27].

In this dissertation, I defend the following thesis statement:

The correlation structure of throughputs obtained by flow level mea-

surements for a number of TCP flow classes can often be captured

by a fewer number of latent factors that can be used to infer which

flow classes share resources in the network.

The research presented in this dissertation is focused on establishing the va-

lidity this statement and exploring its applicability to network performance

analysis. The primary contributions of this research are:

1. Description of a methodology to process TCP flow records in order to

analyze throughput correlations among TCP flow classes that can be

used to infer resource sharing in the Internet.

2. Development of a sampling strategy for flow class throughputs (random

processes) whose samples are taken when the classes are active at the

sampling instant.

3. Evaluation of the use of factor analysis on processed flow records to

explore which TCP flow classes might share congested resources. I em-

pirically investigate the effect of filtering out small and large flows on

inferences for resource sharing.
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4. Validation of the inference methodology using bootstrap methods and

non-intrusive, flow level measurements collected at a single network site.

I apply my methodology to real TCP flow measurements, and use boot-

strap methods to exhibit the statistical accuracy of my inferences.

The outline of the rest of the dissertation is as follows. Chapter 2

reviews the basic theory of factor analysis and bootstrap methods, and intro-

duces the notation used throughout the dissertation. Chapter 3 describes the

method for constructing a flow class throughput correlation matrix using flow

level measurements. Known, analytical fluid models are used to explain the

causes for positive correlations among throughputs of flow classes that share

congested resources. Chapter 4 describes results based on an extensive set of

TCP simulations on tree topologies and demonstrates the effectiveness of the

proposed methodology. Chapter 5 analyzes real TCP data and uses bootstrap

methods to exhibit the statistical accuracy of inferences for resource sharing.

Section 6 concludes the dissertation.
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Chapter 2

Methods

2.1 Introduction

This chapter reviews the basic theory of factor analysis and bootstrap

methods. Factor analysis will be used extensively to analyze the correlation

structure of flow class throughputs, and is the core technique employed for

determining which flow classes share congested resources in the network. The

bootstrap methods will be used for assessing the accuracy of statistical es-

timates that result from factor analyzing flow class throughput correlation

matrices associated with real data. The bootstrap methods allow one to make

inferential statements based on the data at hand.

Section 2.2 introduces the basic notation used. Section 2.3 describes

factor analysis based on the principal component method. Section 2.4 discusses

the bootstrap, a computer-based method that depends on resampling a given

set of data in order to be able to make assessments of the statistical accuracy of

an estimate for any statistic, simple or complicated, of data from an unknown

probability distribution. Finally, Section 2.5 provides a brief summary of the

main concepts discussed in this chapter.
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2.2 Notation

Throughout the dissertation, random variables are denoted by upper-

case Roman letters, and their realized values (outcomes) by the corresponding

lowercase letters. Boldface Roman letters are used for vectors and matrices

whose dimensions and randomness will be explicitly stated whenever they are

not obvious from the context. A sequence of random variables, say Y (i), is de-

noted by {Y (i)}, and their realization by {y(i)} for i = 0, 1, 2, . . .. Uppercase

Roman letters are also used for constants. Greek letters are generally reserved

for parameters (non-random quantities). The estimator of a parameter will

have a “hat” (e.g., θ̂). The letters b, i, j, and n are generally used for indexing,

and will take integer values. Script letters will be used to denote sets, and |S|
denotes the cardinality of set S.

Y ∼ fY means that Y is a random vector with a (joint) probability

distribution function (pdf) fY. The expectation or mean of a random vector

Y is written as a vector µY = E[Y]. The transpose operation for a vector or

a matrix is denoted by a superscript T (e.g., YT ). A p× p diagonal matrix D

can be written as diag(d11, . . . , dpp). A p × p identity matrix Ip is a diagonal

matrix with a 1 in each diagonal position. The trace, tr(·), of a matrix is the

sum of its diagonal elements. The Euclidian norm of a matrix A is denoted

by ‖A‖, and is given by
√

tr(AAT ).

The covariance matrix for a p-dimensional random vector Y is given

by a p × p matrix Σ = Cov(Y) = E[(Y − µY)(Y − µY)T ]. The correlation

matrix for a p-dimensional random vector Y is a p×p matrix R = Corr(Y) =
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D−1ΣD−1, where D = diag(σ1, . . . , σp), and σi is the standard deviation of

the ith component of Y for i = 1, . . . , p. The total variance, a measure of

variability in data, will be given by tr(Σ) (or tr(R), in which case it may be

called total normalized variance, and is equal to p.).

2.3 Exploratory Factor Analysis

2.3.1 What is factor analysis?

Although the development of factor analysis may be credited to a num-

ber of people, its early uses were mainly in psychometric studies to put forward

hypotheses about the organization of mental abilities of individuals based on

examining the correlation or covariance structure of scores on a set of cogni-

tive tests [28, 29]. Later, factor analysis was applied in a diverse number of

disciplines including econometrics, biometrics, and sociology [30].

In this work, exploratory factor analysis is considered. In exploratory

factor analysis, there is no theoretical hypothesis about the underlying struc-

ture of variables. Instead, one attempts to simplify complex interrelationships

among a set of random variables in order to gain insight into their underlying

structure. Such simplification amounts to finding a new set of latent random

variables (factors) that are fewer in number than the original set of variables.

2.3.2 The orthogonal factor model

Suppose that Y = (Y1, . . . , Yp)
T is a vector of p random variables with

a mean vector µY = (µ1, . . . , µp)
T . The idea underlying factor analysis is
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to consider a representation for Y in terms of a random vector of m (m ≤
p) common factors F = (F1, F2, . . . , Fm)T , and a random vector of p unique

factors U = (U1, . . . , Up)
T . For example, Fig. 2.1 illustrates a case in which

four variables are represented in terms of two common factors plus four unique

factors. We assume that Y can be expressed as

Y − µY = ΛF + U, (2.1)

where Λ denotes a deterministic p×m loading matrix. The following additional

assumptions are usually made: E[F] = 0, Cov(F) = E[FFT ] = Im (orthogonal

factors), E[U] = 0, Cov(U) = E[UUT ] = Ψ = diag(ψ1, . . . , ψp) (a diagonal

matrix), and Cov(U,F) = 0. The assumption that Ψ is diagonal means that

all covariances among variables are accounted by the factors. Using (2.1), one

can then write

Σ = Cov(Y) = E[(Y − µY)(Y − µY)T ] = ΛΛT + Ψ.

Alternatively, one can obtain a correlation matrix R, and express it in terms

of Λ and Ψ:

R = Corr(Y) = (ρij) = ΛΛT + Ψ, i, j = 1, . . . , p (2.2)

where ρii = 1 for i = 1, . . . , p. In this work, I will use the correlation matrix in

(2.2) instead of the covariance matrix because the magnitudes of variables of

interest can vary greatly, and normalizing such measurements is preferable.

The elements of the loading matrix Λ, Λij, capture the degree of cor-

relation exhibited between a given factor j and variable i. Estimates Λ̂ and
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Y4

U1 U2 U3 U4

F1 F2

Y2Y1 Y3

Figure 2.1: An exploratory factor analysis model for Y1, Y2, Y3, and Y4. Y1 and
Y3 have a common factor F1. Y1, Y2, and Y4 have a common factor F2. Each
variable also has a factor that is unique to itself given by U1, U2, U3, and U4.

Ψ̂ for Λ and Ψ can be determined by using the principal component method

as follows (see [31] for more details)1. First, the (positive definite) correlation

matrix in (2.2) is expressed as

R = e1ξ1ξ
T
1 + e2ξ2ξ

T
2 + . . . + epξpξ

T
p ,

where (ei, ξi) are the eigenvalue-eigenvector pairs such that e1 ≥ e2 ≥ . . . ≥
ep > 0. Λ and Ψ can be determined by taking the largest m eigenvalues, and

1Unlike the maximum likelihood method, the principal component method does not
assume multivariate normality of data when estimating Λ and Ψ. Hence, the principal
component method is suitable for analyzing multivariate observations from non-normal dis-
tributions such as Internet measurements.
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by approximating R as

R ≈ Λ̂Λ̂T + Ψ̂

= (
√

e1ξ1, . . . ,
√

emξm)× (
√

e1ξ1, . . . ,
√

emξm)T

+




ψ̂1 0 · · · 0

0 ψ̂2 · · · 0
...

...
. . .

...

0 0 · · · ψ̂p


 , (2.3)

so that Λ̂2
i1+Λ̂2

i2+. . .+Λ̂2
im+ψ̂i = h2

i +ψ̂i = 1 for i = 1, . . . , p, where h2
i is called

the communality, and ψ̂i is called the specific “variance”. The communality

represents the portion of the normalized variance of Yi that is captured by the

m common factors, while ψ̂i reflects the portion of the normalized variance

due to a factor that is unique to Yi.

2.3.3 Selection of the number of factors

The number of factors m used in the model needs to account for a

“reasonable” proportion of the total variance (a measure of overall variability),

which is given by the trace of the correlation matrix (see Section 2.2). The

proportion of the total normalized variance due to the jth factor is given

by ej/p, i.e., the jth eigenvalue divided by the number of variables. If the

proportion of the total normalized variance captured by the common factors

is “high”, then we say that the factors have a strong or high explanatory power.

When using the principal component method to “factor” the correlation

matrix without any assumptions on the distribution of the variables, one can

only use ad hoc heuristics for determining the sufficiency of the number of
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factors m in the model. In exploratory studies, one common approach to

determine m is proposed by Kaiser [32]. Kaiser’s rule proposes selecting factors

whose normalized variances (ej) are greater than 1. The intuition behind this

rule is that a factor that has a variance less than 1 contains less information

than a normalized original variable does.

My experiments with data generated by simulation suggest that Kaiser’s

rule generally retains fewer factors than expected. Therefore, for simulated

datasets, I select m based on the number of eigenvalues that are greater than

0.9. In contrast, I have found that Kaiser’s rule produces good results using

real TCP data with the following modification: I select m based on the num-

ber of eigenvalues whose confidence intervals contain 1 or lie above 1. I will

refer to these rules as the modified Kaiser’s rule.

2.3.4 Interpretation of factor loadings

The common factors represent shared sources of variation in variables.

Among the loadings for a given variable i, i.e., Λ̂i1, Λ̂i2, . . . , Λ̂im, the loading(s)

with the largest magnitude(s) are treated as significant loadings. The variables

that have the largest loading with a common factor are identified as variables

that share a common source of variation.

Note that the loading matrix is determined only up to an orthogonal

rotation matrix Γ. If Λ∗ = ΛΓ, then

R = Λ∗Λ∗T + Ψ = ΛΓΓTΛT + Ψ = ΛΛT + Ψ.
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In this work, I apply a rotation to the loading matrix to obtain a better

description of the factors by using a common method in factor analysis called

varimax rotation [31]. Varimax rotation attempts to find a rotation matrix

Γ such that the squares of the loadings on each factor are as spread out as

possible. More specifically, Γ is chosen to maximize

m∑
j=1




p∑
i=1

Λ∗4ij −
1

p

(
p∑

i=1

Λ∗2ij

)2

 .

This criterion tends to drive squared loadings towards either zero or one, and

away from intermediate values. Hence, deciding which loadings are significant

is easier with Λ∗.

2.4 Bootstrap Methods

For most statistics, there is no formula for computing the standard

error of an estimate. Moreover, most of the time, the distribution of a random

sample is unknown. The bootstrap [33] was introduced to address these issues.

The background material in this section is based largely on [33], wherein a

more detailed discussion of the bootstrap can be found.

The bootstrap is a computer-based method that depends on resampling

a given set of data consisting of N samples B times. A bootstrap sample is

a random sample of size N drawn with replacement from the original sample.

Corresponding to each bootstrap replication, an estimate for the parameter

of interest θ̂∗(b) is computed for b = 1, . . . , B. The standard error of θ̂ is

determined by computing the standard deviation of B independent replications

21



of θ̂. The standard error can be treated as an approximate confidence interval

for θ.

A bootstrap method that provides confidence intervals that are very

close to the exact confidence intervals of θ is the one that estimates the bias-

corrected and accelerated (BCa) confidence intervals. I compute the BCa confi-

dence intervals whenever an assessment of the statistical accuracy of estimates

based on collected samples at hand is needed. Let θ̂∗(α) denote the (100α)th

percentile of B bootstrap replications. With an acceleration â and bias correc-

tion ẑ0, the BCa interval of intended coverage 1− 2α, with a lower confidence

bound θ̂lo and an upper confidence bound θ̂up, is given by

(θ̂lo, θ̂up) = (θ̂∗(α1), θ̂∗(α2)),

with

α1 = Φ

(
ẑ0 +

ẑ0 + z(α)

1− â(ẑ0 + z(α))

)
,

α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α)

1− â(ẑ0 + z(1−α))

)
,

where Φ(·) is the standard normal cumulative distribution function, and z(α)

is the (100α)th percentile point of a standard normal distribution. The bias

correction z0 accounts for possible bias in the estimate of θ, and the accelera-

tion a accounts for possible change in the standard error of θ̂ as θ varies. The

estimators of z0 and a are given by

ẑ0 = Φ−1

(
|{θ̂∗(b) < θ̂}|

B

)
,
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and

â =

N∑
i=1

(θ̂(·) − θ̂(i))
3

6{
N∑

i=1

(θ̂(·) − θ̂(i))
2}3/2

.

Here, Φ−1(·) indicates the inverse function of a standard normal cumulative

distribution function. θ̂ is the estimate of θ based on the original data (without

resampling), and θ̂(i) is the estimate of θ computed with the ith value in the

data deleted. Finally, θ̂(·) is given by
1

N

N∑
i=1

θ̂(i). The recommended number

of bootstrap replications to compute BCa confidence intervals is at least 1000

[33].

2.5 Conclusion

In summary, the factor analysis model assumes that each of p random

variables can be expressed as a linear combination of m (m < p) (unobserved)

common factors and a unique factor. When m is much smaller than p, such a

model may be very useful in compactly describing the variability in the original

set of variables. The principal component method can be used to estimate the

loadings and communalities in the factor model.

The principal component method makes no assumptions on the distri-

butions of the original variables. Instead, the bootstrap method is used to

assess the statistical accuracy of estimates of very complicated statistics of

data from an unknown distribution. It is a computationally intensive method

that has become viable through the availability of high speed computers in
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recent years.

The methods introduced in this chapter are applied to network flow

measurements in subsequent chapters. In Chapters 3–5, factor analysis is used

to determine the latent factors of elastic flow class throughputs. The bootstrap

is employed in Chapter 5 to assess the statistical accuracy of inference results

for real TCP measurements.
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Chapter 3

Flow Level Measures for Capturing

Resource Sharing by Flows

3.1 Introduction

The quality of service perceived by elastic flows can be characterized by

their throughput, i.e., their size in bits, bytes, or packets divided by their delay,

or sojourn time, in the network. The throughputs of elastic flows that tempo-

rally overlap on congested resources are positively correlated. This premise is

in fact very intuitive: e.g., users downloading documents perceive high quality

of service or poor quality of service together when there is a common congested

resource along the routes from the sources of the documents to users.

Correlated throughputs can be explained by the dynamic bandwidth

sharing of rate control mechanisms, such as TCP, that allocate rates or in-

stantaneous bandwidths to resource sharing flows. The capacity or bandwidth

available to a flow changes with new flow arrivals and departures over time.

Fig. 3.1 illustrates sharing of instantaneous available resource capacity by two

temporally overlapping flows with similar packet round trip times and packet

loss rates. Due to dynamic bandwidth sharing, the instantaneous bandwidth

available to the flows will vary in a correlated manner during the time period
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time

flow 1

flow 2

flow 1 and flow 2
share available
capacity

available capacity is
allocated to flow 2

available capacity is
allocated to flow 1

Figure 3.1: Sharing of instantaneous available resource capacity by two tem-
porally overlapping flows. In this particular example, both flows have similar
packet round trip times and packet loss rates, and the instantaneous band-
width sharing is roughly fair during the time period over which they overlap.

over which they overlap. The throughput of a flow is determined by the vari-

able bandwidths allocated to flows during their sojourn in the network. Hence,

a key premise in this work is that the throughputs of temporally overlapping

flows that share a resource are correlated.

The collection of flows in the network is denoted by a set F. The size,

start and end times1, and duration of a flow f is denoted by vf , sf , ef , and

df = ef − sf , respectively. Each flow f ∈ F belongs to a flow class c ∈ C. The

function φ : F → C associates a flow with a flow class. Key flow attributes are

shown in Table 3.1 for easy reference.

Using the notation in Table 3.1, let Fc(t) = {f ∈ F : φ(f) = c and sf ≤
t < ef} denote the set of flows that belong to class c and are active at time t.

A flow class is active at time t if |Fc(t)| > 0. The perceived throughput of a

1For actual TCP flows, the start time is the time of arrival of the first packet in a flow,
and the end time is the time of arrival of the last packet in a flow.
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Table 3.1: Key flow attributes.

F Set of flows, e.g., f ∈ F

C Set of classes, e.g., c, ci, cj ∈ C

vf Size of flow f in bits, bytes, or packets
sf Start time of flow f
ef End time of flow f
df Duration, or sojourn time, of flow f
yf Throughput of flow f , and is given by vf/df

bf (t) Bandwidth allocated to flow f at time t
φ(·) A function that maps a flow to a flow class

flow f is given by yf = vf/df .

This chapter analyzes the extent of throughput correlations that exist

between resource sharing elastic flow classes by using known analytical models.

Note that the instantaneous rates allocated for flows, which are the primary

measurement basis for making inferences in this dissertation, are not available

from flow records. Nevertheless, throughput measurements that are directly

available from the records can be correlated to make inferences on resource

sharing.

Section 3.2 introduces a simple model for the congestion level seen by

flows at a resource, and analyzes the degree of correlation between through-

puts of flows with different durations and different amounts of temporal over-

lap. Section 3.3 describes how to process flow records to compute flow class

throughputs. Section 3.4 formulates a conditional sampling strategy to analyze

time-varying flow class throughputs in the classical factor analysis framework.
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Section 3.5 proposes a method to estimate the flow class throughput correla-

tion matrix using pairwise correlations between flow class throughputs. Sec-

tion 3.6 presents simulation results based on analytical fluid models to verify

correlations due to resource sharing and to explore the viability of explaining

throughput variability in terms of factors. Section 3.7 concludes the chapter.

3.2 A Model for Congestion at a Resource

First, I formalize the existence of correlation between throughputs of

elastic flows that share a resource. In Chapter 1, it was stated that end users

of elastic flows that are temporally overlapping long enough on the same con-

gested resource tend to perceive high throughput or low throughput together.

Fluid models, which are the main focus of this chapter, are used to

analyze rate control mechanisms. In these models, the rate or bandwidth

allocated to a flow is adjusted instantaneously when the number of flows in

the system changes as a result of flow arrivals and departures. Unlike fluid

models, actual rate control mechanisms, such as TCP which will be discussed

in Chapter 4, take some time to react to changes in the congestion state of the

network. Furthermore, in TCP, the throughputs of very small flows are limited

by TCP’s Slow Start [11]. Therefore, small flows may not have an opportunity

to “learn” the congestion state of the network during their sojourn time. The

throughput of large flows (flows that carry a large number of bytes) is largely

independent of the arrival and departure dynamics of flows in the system, and

is approximately equal to a mean value (see e.g., [34]).
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Consider a simple model based on a first-order autoregressive (AR(1))

process for the congestion level seen by a flow2. Let {B(i)} be an AR(1)

process with mean µB that represents the instantaneous bandwidth available

to each flow sharing a resource at discretized times, and is defined by

B(i)− µB = α (B(i− 1)− µB) + Z(i),

where {Z(i)} ∼ N(0, σ2
Z), |α| < 1, and Z(i) is uncorrelated with B(j) for each

j < i. Note that a given flow f carries an amount of data (e.g., bits, bytes, or

packets) equal to

Vf =

ef∑
i=sf

B(i).

For simplicity, consider the throughputs of two flows f1 and f2 with given

start and end times, and suppose that sf1 = 0 and sf1 ≤ sf2 without loss of

generality (e.g., see Fig. 3.2). The throughputs of f1 and f2 will be3

Yf1 =
1

df1

ef1∑
i=0

B(i) +
Wf1

df1

and Yf2 =
1

df2

ef2∑
j=sf2

B(j) +
Wf2

df2

,

where Wf1 ,Wf2 ∼ N(0, σ2
W ) model the “noisy” throughputs seen by short

flows, and are independent of each other, {B(i)}, and {Z(i)}. In this context,

a “noisy” throughput means that the throughput perceived by a flow is not a

typical one for the class to which the flow belongs. For flows with long sojourn

times, the “noise” terms become negligible. The autocorrelation function of

2I also assume that the congestion process is roughly independent of the flow; i.e., the
flow makes only a small contribution to the overall congestion.

3Note that in the discrete-time AR(1) model, df = ef − sf + 1.
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time

o12

f1

sf1 df1 ef1

sf2 df2 ef2

f2

Amount of overlap between f1 and f2

Figure 3.2: Temporal overlap between flows f1 and f2. The start times, end
times, and durations of flows are shown.

{B(i)} is denoted by γ(h), and is equal to
σ2

Zαh

1− α2
for h ≥ 0. The covariance

and correlation between Yf1 and Yf2 are

Cov(Yf1 , Yf2) =
1

df1df2

ef1∑
i=0

ef2∑
j=sf2

γ(|j − i|),

and

Corr(Yf1 , Yf2) =
1

df1df2σYf1
σYf2

ef1∑
i=0

ef2∑
j=sf2

γ(|j − i|), (3.1)

where σYf1
and σYf2

are the standard deviations of throughputs of f1 and f2,

respectively. The standard deviation of the throughput of f with sf = 0 is

given by

σYf
=

√
Cov(Yf , Yf ) =

√√√√ 1

d2
f

(
ef∑
i=0

ef∑
j=0

γ(|j − i|) + σ2
W

)
. (3.2)

30



I compute the standard deviation of flow throughput as a function of flow

duration based on first-order models with σ2
Z = 1, σ2

W = 0 and σ2
W = 15,

and α = 0.3 and α = 0.8. Figs. 3.3 and 3.4 show that throughputs of long

flows have smaller standard deviation than those of short flows. Moreover,

the increase in throughput standard deviation due to the inability of a flow to

react to congestion instantaneously becomes negligible for long flows. These

results agree with the observations reported for the throughputs of small and

large flows in [34] and [35].

To illustrate the behavior of (3.1) with different flow durations and

different amounts of temporal overlap between the two flows, I set α = 0.5,

σ2
Z = 1, and σ2

W = 0 (no noise), and in Figs. 3.5 and 3.6, exhibit the correlation

as a function of sf2 for different df2 values when ef1 = 20 and ef1 = 30. One can

conclude that the correlation is largely determined by the amount of temporal

overlap between flows 1 and 2, o12, relative to the duration of the longer flow,

or

o∗12 =
o12

max{df1 , df2}
,

where o12 = max{ef1 − sf2 , 0}. The figures also show that the location of the

overlap of a short flow with a longer flow affects the correlation. For example,

in Fig. 3.5 the correlation corresponding to df2 = 10 starts at 0.75 when the

start times of the two flows are aligned, increases to 0.79 when sf2 = 4 and

sf2 = 6, and then decreases.

For flows with short sojourn times, the “noise” terms decrease the cor-
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Figure 3.3: Standard deviation of flow throughput as a function of flow dura-
tion in (3.2) with α = 0.3, and σ2

W = 0, σ2
W = 15.
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Figure 3.4: Standard deviation of flow throughput as a function of flow dura-
tion in (3.2) with α = 0.8, and σ2

W = 0, σ2
W = 15.

32



0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
f2

 (Start time of f
2
)

C
or

re
la

tio
n

Throughput correlation between f
1
 and f

2
 (α=0.5, σ2

Z
=1, s

f1
=0, e

f1
=20)

d
f2

=10
d

f2
=20

d
f2

=30
d

f2
=40

Figure 3.5: The effect of flow duration and temporal overlap on the correlation
in (3.1) between throughputs of f1 and f2 that share a congested resource. The
correlation values shown are for σ2

W = 0. Flow 1 starts at time 0 and ends at
time 20.
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Figure 3.6: The effect of flow duration and temporal overlap on the correlation
in (3.1) between throughputs of f1 and f2 that share a congested resource. The
correlation values shown are for σ2

W = 0. Flow 1 starts at time 0 and ends at
time 30.
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relation in (3.1) even with o∗12 close to 100%. By (3.1), for σ2
W > 0

ef1∑
i=0

ef2∑
j=sf2

γ(|j − i|)
√√√√

ef1∑
i=0

ef1∑
j=0

γ(|j − i|) + σ2
W

√√√√
ef2∑

i=sf2

ef2∑
j=sf2

γ(|j − i|) + σ2
W

is less than
ef ′1∑
i=0

ef ′2∑
j=sf ′2

γ(|j − i|)

√√√√
ef ′1∑
i=0

ef ′1∑
j=0

γ(|j − i|) + σ2
W

√√√√√
ef ′2∑

i=sf ′2

ef ′2∑
j=sf ′2

γ(|j − i|) + σ2
W

for two other flows f ′1 and f ′2 with sf ′1 = sf1 , sf ′2 = sf2 , df ′1 = df1 + ε and

df ′2 = df2 + ε, with ε > 0 and ε → 0. Figs. 3.7 and 3.8 show the effect of

having σ2
W = 15. Note that the correlation corresponding to sf1 = sf2 and

df1 = df2 = 20 in Fig. 3.7 is 0.84, whereas the correlation corresponding to

sf1 = sf2 and df1 = df2 = 30 in Fig. 3.8 is 0.89. Fig. 3.9 illustrates the effect

of noise, σ2
W = 15, on the degree of throughput correlation between perfectly

overlapping flows; i.e. sf1 = sf2 and ef1 = ef2 . Both flows start at time 0, and

their end times correspond to durations of the flows. The degree of positive

correlation is low for “noisy” short flows even when they overlap perfectly. As

the duration of perfectly overlapping flows increase, throughput correlation

approaches to 1.

In summary, the throughput samples associated with long flows that

have large amounts of temporal overlap will result in high throughput corre-
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Figure 3.7: The effect of flow duration and temporal overlap on the correlation
in (3.1) between throughputs of f1 and f2 that share a congested resource. The
correlation values shown are for σ2

W = 15. Flow 1 starts at time 0 and ends at
time 20.
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Figure 3.8: The effect of flow duration and temporal overlap on the correlation
in (3.1) between throughputs of f1 and f2 that share a congested resource. The
correlation values shown are for σ2

W = 15. Flow 1 starts at time 0 and ends at
time 30.
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Figure 3.9: The effect of noise, σ2
W = 15, on the correlation in (3.1) between

throughputs of perfectly overlapping f1 and f2 that share a congested resource.
Both flows start at time 0.

lations. However, such samples occur rarely, because there are not too many

long flows in the current Internet [36–38]. Moreover, the throughput sam-

ples associated with long flows overlapping with short flows will give a lower

value for throughput correlation. Hence, leaving out long flows is desirable

when estimating throughput correlations. On the other hand, the throughput

samples associated with short flows are noisy, and will also give a lower value

for throughput correlation even with flow samples that have large amounts

of temporal overlap relative to their durations. Since flows with long sojourn

times will typically be large (in size), I study the effect of different size thresh-

olds to filter out large flows, and similarly, consider the impact of different size

thresholds for omitting small flows. Unlike the duration of a flow, the size of

a flow is invariant regardless of the capacity of links. Hence, flow size is the
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proper flow attribute to consider for filtering out flows.

3.3 First- and Second-Order Statistics of Flow Class
Throughputs

Recall that a flow class is defined as a collection of flows that have

common attributes. For example, flows that are destined to the same subnet

address may be considered as a flow class. In order to estimate through-

put correlations due to resource sharing, I consider temporal observations of

throughputs of flow classes. In general, there is also a large number of flows

from a given class at a given time. As such, I define the throughput of a flow

class c ∈ C as an average over the flows in that class that are active at a time

t at a measurement point. The flow class throughput at time t is given by

yc(t) =





1

|Fc(t)|
∑

f∈Fc(t)

yf , if |Fc(t)| > 0,

0, otherwise.

(3.3)

Fig. 3.10 illustrates how to compute flow class throughputs using an example

with two flow classes.

I begin by computing the correlations among flow class throughputs

using temporal flow class throughput observations at times when all of the

flow classes are active. Note that the requirement of this conditional sampling

strategy is a stringent one, especially when there are only a few flows belonging

to a flow class under consideration. This requirement will lead to the reten-

tion of only a few throughput observations for statistical analysis. However,

I choose to impose this stringent condition to guarantee positive definiteness
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Figure 3.10: A collection of flows that belong to two different classes. The
flow sojourn times are given by their lengths. The numbers next to the flows
(and the widths of flows) indicate the throughputs yf perceived by flows. The
throughput of flow class 1 is (1+2+3)/3=2 at t1. The throughput of flow class
2 is 2 at t1. Flow class 1 is inactive at t2. The throughput of flow class 2 is
(2+2)/2=2 at t2.

of the flow class throughput correlation matrix that will be used in Section

3.4. Note that the principal component method that was described to esti-

mate factor loadings and specific variances interpreted the eigenvalues of the

correlation matrix as variances of factors (see Section 2.3.3). The variances

must be positive quantities. I will postpone the discussion of estimation of the

correlation matrix of flow class throughputs by using a pairwise correlation

strategy to Section 3.5.

The observation time is divided into discrete intervals4. Denote the

4Throughout this dissertation, one-second intervals are used. I find that using finer scale
intervals does not affect the reported results. Using intervals that are longer than one second
will reduce the number of samples of flow class throughputs, thereby producing less accurate
results.
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number of discretized time intervals for a measurement period by T and the

number of discretized intervals over which all flow classes are active by N(T ).

I assume that the throughput of a flow at a discretized time interval is equal to

its “continuous-time” throughput if the flow is active anytime during that in-

terval. I also assume that {yci
(n)} and {ycj

(n)}, n = 1, . . . , T , are realizations

of ergodic random processes of throughputs of flow classes ci and cj, respec-

tively (on discretized intervals). Define the event S(n) = {yci
(n) > 0,∀ci ∈ C}.

The conditional mean and variance of the throughput for flow class ci are de-

fined as

µci
= lim

T→∞
1

N(T )

T∑
n=1

yci
(n)1S(n), (3.4)

σ2
ci

= lim
T→∞

1

N(T )

T∑
n=1

(yci
(n)− µci

)2 1S(n), (3.5)

where 1E is the standard indicator function, which is equal to 1 if E is true

and 0, otherwise. The conditional correlation of throughputs of flow classes ci

and cj is defined as

ρcicj
= lim

T→∞

T∑
n=1

(yci
(n)− µci

)(ycj
(n)− µcj

)1S(n)

N(T )σci
σcj

. (3.6)

3.4 Conditioned Throughputs of Flow Classes

In order to be able to use factor analysis in a classical setting, I in-

troduce vectors of random variables corresponding to flow class throughputs.

Let fY denote the joint pdf of the random vector, Y = (Yc1 , Yc2 , . . . , Ycp)
T , of
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typical class throughputs for p flow classes at a typical time; i.e., Y ∼ fY.

Note that it is possible that Yci
= 0 for any i = 1, . . . , p; i.e., no flow from

class ci is active at a typical time. Next, define E = {Yci
> 0,∀ci ∈ C}.

Also, define a random vector of flow class throughputs conditioned on E,

Y∗ = (Y ∗
c1

, Y ∗
c2

, . . . , Y ∗
cp

)T , with a joint pdf fY|E, i.e., Y∗ ∼ fY|E. Denote

the mean vector of Y∗, E[Y∗], by µY∗ = (µc1 , µc2 , . . . , µcp)
T .

Factor analysis that was described in Section 2.3 can be directly applied

to the conditional correlation matrix R given by

R = Corr(Y∗) = (ρcicj
) = ΛΛT + Ψ, i, j = 1, . . . , p (3.7)

where ρcici
= 1, and ρcicj

is given by (3.6). For factor analysis, use of a

correlation matrix is preferred to a covariance matrix because the magnitudes

of flow class throughputs can vary greatly and normalizing such measurements

is required.

3.5 Estimation of the Correlation Matrix from Pairwise
Correlations

One drawback of the development until this point is that all of the

flows must be active at a given time to contribute an observation of random

vector Y∗ to the estimate of the first- and second-order statistics in (3.4)–(3.6).

When there are only a few flows belonging to a flow class under consideration,

only a few class throughput observations are retained for statistical analysis.

To address this problem, I compute pairwise correlations between variables
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to estimate the correlation matrix for flow class throughputs. In order to

compute the pairwise correlations, I use the class throughput observations at

times when the flow class pair is active. Pairwise correlations are employed

in multivariate statistics when there are “missing values” for one or more

variables in a significant number of observation vectors (see for example, [31]

and [39]). I adopt this approach to compute correlations since there are a

lot of sampling instants when not all of the variables can be manipulated

simultaneously: Instead of having missing values, simply, no flow from a given

flow class is active at that instant. Since the correlation matrix constructed

in this way may not always be positive definite, the matrix can be adjusted to

make it positive definite. For example, as proposed in [40], a constant may be

added to the non-positive eigenvalues of R to make them positive.

Define the event P (n, ci, cj) = {yci
(n) > 0 and ycj

(n) > 0, for ci, cj ∈
C}; i.e. both classes ci and cj are active at (discretized) time n. Let N(T )

now be the number of discretized intervals over which both flow classes ci

and cj are active, where T denotes the number of discretized time intervals

of a measurement period. I estimate the correlation between throughputs of

ci and cj by replacing S(n) by P (n, ci, cj) in (3.4) and (3.5) to obtain the

corresponding conditional pairwise mean and variance:

µci,cj
= lim

T→∞
1

N(T )

T∑
n=1

yci
(n)1P (n,ci,cj),

σ2
ci,cj

= lim
T→∞

1

N(T )

T∑
n=1

(yci
(n)− µci,cj

)2 1P (n,ci,cj),
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where 1E is the standard indicator function defined before, and is equal to 1 if

E is true and 0, otherwise. The conditional correlation of throughputs of flow

classes ci and cj is now defined as (cf. the correlation in (3.6))

ρcicj
= lim

T→∞

T∑
n=1

(yci
(n)− µci,cj

)(ycj
(n)− µcj ,ci

)1P (n,ci,cj)

N(T )σci,cj
σcj ,ci

. (3.8)

Hence, a pairwise correlation matrix that is constructed by using pairwise

correlations between variables is given by

R ≈ (ρcicj
), i, j = 1, . . . , p, (3.9)

where ρcici
= 1, and ρcicj

is given by (3.8). Henceforth, I will approximate

the correlation matrix of flow class throughputs in (3.9) by using the pairwise

estimates of correlations.

3.6 Simulations Using Fluid Models

While the claim that flow classes that share congested resources per-

ceive high or poor quality of service (throughput) together is intuitive, it may

be helpful to explain such correlations by describing how bandwidth is shared

in models that approximate rate control mechanisms such as TCP. Bandwidth

sharing mechanisms try to use the available resource capacities to the fullest

extent while maintaining a certain fairness criterion (to be made specific later

in this section) when making bandwidth allocations to flows. The rate of a

flow is then the bandwidth share allocated to it at a given time. These shar-

ing mechanisms explain the existence of positively correlated throughputs for

classes sharing a congested resource.
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In this section, I use known, analytical fluid models to generate flow

records by simulation. The fluid models are used to determine the bandwidth

shares [34, 35] achieved by flows at a given time. In such models, the rate or

bandwidth allocated to a flow is adjusted instantaneously when the number of

flows in the system changes as a result of flow arrivals and departures. Note

that the rate variation of a flow during its sojourn will not be available from its

flow record. The dynamic bandwidth sharing model approximates actual rate

control mechanisms (such as TCP) well due to the assumption of separation

of time scales: The time scale of flow durations is much longer than the time

scale on which rate control mechanisms converge to equilibrium. Bandwidth

sharing among flows is considered first on a single resource and then in a

“linear” network.

3.6.1 The M/GI/1-PS queue

The simplest abstraction in which the number of flows on a single re-

source (such as a link) can be modelled is an M/GI/1-PS queue, i.e., a single-

server processor sharing queueing system with an exponential interarrival time

distribution and a general, independent service time distribution [41]. That

is, if all flows share similar round trip times and packet loss rates, the resource

bandwidth w is shared equally among the active flows. Hence, the instanta-

neous bandwidth allocated to a flow on the resource is given by

bf (t) =





w

|A(t)| , if |A(t)| > 0 and f ∈ A(t),

0, otherwise,
(3.10)
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where

A(t) =
⋃

c∈C
Fc(t) (3.11)

denotes flows from all classes that are active at a given time t in this single

resource system. Then, the perceived throughput yf for a flow f is given by

yf =
1

df

∫ ef

sf

bf (t)dt. (3.12)

While (3.10) is not available from flow measurements, yf in (3.12) can easily

be obtained from flow records (see Section 3.1).

A parallel collection of queues, as shown in Fig. 3.11, constitutes one

of the simplest test cases to investigate class throughput correlations.

3.6.2 A linear network

In reality, throughputs of flow classes depend on the traffic on all re-

sources. Fig. 3.12 illustrates a linear network model with two resources. Such

a network can be used to model flows traversing several links that interact

with the cross traffic on these links. The linear network model enables us to

investigate the coupling effects between flows following multi-link paths (e.g.,

class 1, denoted c1) and cross traffic (e.g., class 2, denoted c2 and class 3,

denoted c3), and possibly between flow classes not sharing a link (e.g., c2 and

c3). To determine the character of bandwidth sharing among flows on a linear

network, proportionally fair sharing is considered [42, 43]5.

5More details on various bandwidth sharing models can be found in [42–45].
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Figure 3.11: Two parallel M/GI/1-PS queues. All four flow classes traverse
the measurement point.
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Figure 3.12: A linear network with two resources. All three flow classes tra-
verse the measurement point.

Let L denote the set of resources, each with capacity wl, l ∈ L, in the

linear network. At a given time t, the bandwidth allocated to each flow, bf (t),

must be such that the following capacity constraint is satisfied:

∑

f3l,f∈A(t)

bf (t) ≤ wl,∀l ∈ L. (3.13)

Here, A(t) denotes flows from all classes in the network that are active at a

given time t, and is given by (3.11).

We say that the bandwidth allocations are proportionally fair if they

maximize
∑

f3l,f∈A(t)

log bf (t) subject to the capacity constraint in (3.13). In

other words, proportionally fair sharing maximizes the overall utility of band-

width allocations when the utility functions are logarithmic.
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Denote the number of flows belonging to class c at time t by nc(t). For

the network in Fig. 3.12, the proportionally fair allocation with unit capacity

resources is [34]:

bf (t) =





0, if f /∈ A(t),
1

nc1(t) + nc2(t) + nc3(t)
, if f ∈ Fc1(t),

1

nci
(t)

(
1− nc1(t)

nc1(t) + nc2(t) + nc3(t)

)
,

if f ∈ Fci
(t), i ≥ 2.

(3.14)

Hence, the instantaneous bandwidth allocation for flows depends on the num-

ber of flows on every link. As before, the perceived throughput yf of a flow is

given by (3.12).

3.6.3 Simulation setup

In each case, it is assumed that the flows in class c arrive according to

a Poisson process with rate λc. The sizes of flows are chosen from a lognormal

distribution [37, 38]. A random variable V has a lognormal distribution if the

random variable U = ln V has a normal distribution. Hence, the pdf of the

lognormal distribution is given by

f(v|η, τ) =
1√

2πτv
e−(ln v−η)/2τ2

, (3.15)

where η is the mean, and τ is the standard deviation of the associated normal

variable U . Let β = E[V ] and σ2 = Var(V ). In the simulations, I set β = 1

and σ = 10. Flow sizes selected from the lognormal distribution consist of a

large number of small flows and a few very large flows (as may be the case in

the current Internet [36–38]).
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In the fluid simulations, I choose unit capacity resources; i.e., I set

w = 1 for each resource. Denote the load offered by a class ci on a resource

by νci
= λci

β. The long-term proportion of time the resource is busy, or the

utilization factor of the resource, ν, is given by the sum of loads offered by all

classes traversing that resource. As usual, assume ν < 1 for stability [46] and

ν → 1 indicates that a resource is congested and hence is a bottleneck. I vary

the utilization factor of a resource by varying the arrival rates of flows. For the

parallel, processor sharing queues, I allocate bandwidth to flows according to

(3.10), and in the linear network, the bandwidth is allocated to flows according

to (3.14). The throughput of each flow is determined by the variable bandwidth

allocated to it during its sojourn in the network. After a flow is terminated,

its record is created for subsequent processing.

3.6.4 Simulation results and discussion

For two parallel M/GI/1-PS queues, I first determine the correlation

between throughputs of classes sharing a queue (class 1 and class 2) and the

correlation between throughputs of classes not sharing a queue (class 1 and

class 3) as a function of queue utilization. Both queues are kept at the same

utilization factors so that any observed correlations can be attributed to re-

source sharing only.

Figs. 3.13–3.15 illustrate the effect of filtering out large flows on pair-

wise correlations and on percent variance accounted by the common factors.

The plots labelled as “original” correspond to cases in which all flows in the
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original set are included in class throughput computations. The plots that

correspond to retaining flows only in {f ∈ F : vf < vth} with vth = 0.5, 1, and

2, respectively, are labelled accordingly.

From Fig. 3.13, we observe that the throughputs of classes sharing a

congested queue exhibit strong positive correlation, whereas from Fig. 3.14,

we can conclude that throughputs of classes not sharing a queue are only very

weakly correlated (or uncorrelated). From Fig. 3.13, we observe the benefit

of filtering out flows whose sizes are greater than a given threshold. Even at

low utilization, the degree of positive correlation is very high after discarding

large flows whose throughputs distort the structure of correlation among flows

sharing resources. By decreasing the threshold (above which the flows are

filtered out), we obtain higher correlations for classes sharing a resource. If we

filter out too many flows by further decreasing the threshold, then the number

of samples available for statistical analysis will decrease, thereby reducing the

accuracy of the estimates. Fig. 3.14 shows that filtering out long flows does

not significantly alter the uncorrelated nature of flow throughputs not sharing

resources.

Using the modified Kaiser’s rule described in Section 2.3.3, I correctly

identify two significant factors when queue utilizations are greater than 30%.

Fig. 3.15 shows the percentage of variance accounted by significant factors

and the number of significant factors for different utilization factors. A “high”

percentage indicates a strong explanatory power of factors. The explana-

tory power increases with the utilization factors: At higher utilizations, flow
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Figure 3.13: Pairwise correlation between throughputs of flow classes (class 1
and class 2) sharing an M/GI/1-PS queue in Fig. 3.11.
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Figure 3.14: Pairwise correlation between throughputs of flow classes (class 1
and class 3) not sharing an M/GI/1-PS queue in Fig. 3.11.
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pled by class 1 in the linear network in Fig. 3.12. Correlations are estimated
after filtering out flows with sizes larger than 2.

throughputs are largely determined by the bottlenecked resources. Without

filtering out large flows, the number of significant factors (determined by rules

described in Section 2.3.3) for utilization factors 20%, 25%, 30% are incor-

rectly determined to be 3 instead of 2 (labelled by 3 in Fig. 3.15). Therefore,

filtering out large flows also improves our ability to extract significant factors

from the correlation matrix.

Fig. 3.16 shows the degree of correlation between classes not sharing a

resource but whose throughputs are coupled by a flow class traversing both

resources in the linear network in Fig. 3.12. The results shown are based on

filtering out flows whose sizes are larger than 2. Each correlation estimate
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shown in the figure is the average of five simulation runs. The arrival rate of

flow class 1 is varied to analyze the effect of the coupling flow class. Different

plots in Fig. 3.16 correspond to different arrival rates from classes 2 and 3.

The positive correlation between throughputs of classes 2 and 3 is negligible

and starts to increase only when the loads offered by classes 2 and 3 are low

and when the load offered by class 1 is comparable to those of classes 2 and 3.

Such coupling effects can be ignored if we suppose that class 2 corresponds to

internal traffic on the first link belonging to one network, class 3 corresponds

to internal traffic on the second link belonging to another network, and class

1 corresponds to transit traffic carried by these networks. In general, the

proportion of transit traffic that shares a link with internal traffic should be

low.

3.7 Conclusion

This chapter introduced a new approach to network tomography prob-

lems that involve inferring resource sharing by correlating flow level network

traffic measurements. First, by using a model based on an AR(1) process, I

demonstrated the degree of correlation between two temporally overlapping

flows that share a resource. Based on this first-order model, I explained why

filtering out large- and/or small-sized flows helped in capturing throughput

correlations due to resource sharing. Then, I described a sampling strategy

for multiple random processes, or random functions of time, to extract the cor-

relation structure that exists among flow class throughputs conditioned upon
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their simultaneous activity in the system. I applied this sampling strategy to

simulation data generated by known, analytical fluid models to demonstrate

the positive correlation among flow classes that share congested resources in

the network.

In the next chapter, factor analysis is applied to flow class throughput

correlation matrices obtained via TCP simulations. The results will provide

an evaluation of the feasibility of this approach for TCP/IP networks.
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Chapter 4

Inferring Resource Sharing Among

TCP Flow Classes: Simulation and Analysis

4.1 Introduction

This chapter presents results based on part of an extensive set of OP-

NET Modeler [47] simulations that incorporate actual characteristics of TCP

flows. The primary aim of this chapter is to validate the methods introduced

in Chapter 3 for identifying resource sharing flow classes in a controlled en-

vironment in which the routes from the sources to destinations are known

exactly. The effectiveness of factor analytic methods in identifying such flow

classes under different traffic conditions and different network configurations

is evaluated.

Section 4.2 briefly summarizes TCP’s congestion control mechanism.

Section 4.3 describes results of applying factor analysis to infer flow classes

that share congested resources in networks with tree topologies. While actual

networks rarely look like trees, tree topologies have been frequently used in

network tomography research. Trees may provide a good abstraction for log-

ical topologies. For example, each tree branch can represent a link that may

potentially become a bottleneck in the actual network, while overprovisioned
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links are not included in the tree. Section 4.4 revisits the linear network topol-

ogy that was first introduced in Chapter 3. In a linear network, I show that

factor analysis can identify the two bottleneck resources that are visited by a

flow class. Section 4.5 describes an application of the developed methodology

to wireless local area networks for investigating proper configuration of wire-

less access point for the traffic and spatial access patterns of wireless users.

Section 4.6 concludes the chapter.

4.2 A Brief Review of TCP’s Congestion Control

Unlike fluid models discussed in Chapter 3, actual TCP flows are pack-

etized (or, alternatively, the packet sizes are not infinitesimally small as as-

sumed by the fluid models). This means that the notion of “rate” of a flow

needs to be redefined. The amount of data in transit from a source at a given

time is limited by the size of its congestion window (CWND) [11] to prevent

congestion in the network. A source can transmit CWND bytes per round

trip time (RTT), which is the time between sending a packet and receiving

the corresponding acknowledgement from the destination. We can say that at

a given time the “rate” of a TCP flow is approximately
CWND

RTT
.

TCP implements an end-to-end congestion control algorithm. Each

source determines the available capacity in the network from the acknowl-

edgement packets received from the destination. When congestion due to flow

level traffic dynamics causes packet losses inside the network, the destination

will not acknowledge the missing packets. The source will then adjust its con-
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gestion window, and thus its transmission “rate”, to send fewer packets per

RTT. As congestion levels decrease, there will be fewer packet losses, which in-

dicates higher available capacity. The source will then increase its “rate”. For

long TCP flows that share a congested resource, congestion control amounts

to sharing the bandwidth at that resource.

The throughput of a (small) flow will be limited by TCP’s Slow Start

[11] and the throughput of flows, in general, depends on the sizes of sender’s

and receiver’s buffers. Moreover, the bandwidth allocated to a given TCP

flow does not change instantaneously when the number of flows in the system

changes as a result of flow arrivals and departures, as was the case in the

fluid models. Nevertheless, I show that such imperfections do not affect our

ability to infer resource sharing by correlating flow class throughputs which

are computed based only on generated flow records.

4.3 Networks with Tree Topologies

Consider the tree topology shown in Fig. 4.1. Users download files from

a server using FTP. Access links are denoted by A1, A2, and A3, and the link

connecting the FTP server to the network is denoted by S1. Seven classes

of flows are defined according to their local subnet addresses. Each subnet

is a 10 Mbps local area network that has 10 workstations. Each simulation

corresponds to 2 hours of file download activity. During simulations, I record

the request time, size (in bytes) and duration (in seconds) of each file transfer.

File transfer requests arrive according to a Poisson distribution, and file sizes
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Figure 4.1: Tree topology used in OPNET TCP simulations.

are selected from a lognormal distribution (as was the case in the fluid model

simulations) with a mean file size of 16 kB and a standard deviation of 131

kB. On each bottleneck link, I include background traffic to model the effects

of additional traffic from other users or applications.

In order to be able to capture the throughput correlation between flow

classes successfully, I consider the effect of flow sizes on correlation estimates.

The results in Section 3.6.4 showed that removing large flows from flow records

under consideration improved our ability to infer positive throughput corre-

lation among resource sharing flow classes. Unlike fluid models, TCP takes

some time to react to changes in the congestion state of the network, and the
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throughputs of very small flows are limited by TCP’s Slow Start [11]. There-

fore, small flows may not have an opportunity to “learn” the congestion state

of the network during their sojourn time. This suggests that when estimat-

ing TCP class throughput correlations, small flows and large flows should be

filtered out.

In the subsequent discussion, the lower and upper thresholds for fil-

tering out flows are determined empirically. I will show the effects of re-

taining flows satisfying the following conditions: {f ∈ F : vf > 4 kB},
{f ∈ F : vf > 8 kB}, {f ∈ F : vf < 16 kB}, {f ∈ F : vf < 32 kB}, and

{f ∈ F : 4 < vf < 32 kB}. As before, I refer to the results based on the entire

set of flows (without filtering) as the “original”.

4.3.1 Squared error loss

In order to assess the ability of factor loadings to distinguish which

factors have the most effect on throughputs, I define squared error loss as

L := ‖Λ0 − abs(Λ̂)‖2 =

p∑
i=1

m∑
j=1

(Λ0
ij − |Λ̂ij|)2, (4.1)

where Λ0
ij = 1 if the flow class ci shares the factor j, and Λ0

ij = 0 otherwise,

which correspond to “ideal” loadings in a matrix Λ0. When there is only one

factor (m = 1), I set Λ0
i1 = 1 for all i. The notation ‖ · ‖ denotes the Euclidian

norm, and for a matrix, it is given by the square root of the sum of squares

of each element in the matrix. The function abs(·) returns a matrix whose

elements are the absolute values of the corresponding elements in the input
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matrix. The primary motivation behind introducing the squared error loss is

to assess the accuracy of our inference and to investigate various schemes to

improve the accuracy1. I will say that the accuracy of the inference is high

if the squared error loss is small. Note that squared error loss penalizes large

deviations from the ideal more than small deviations. Next, I will analyze

scenarios with different number of bottlenecks under various load conditions.

4.3.2 Single bottleneck: Effect of background traffic

Consider the case in which link S1 (1.544 Mbps) in Fig. 4.1 is the bot-

tleneck and access links A1, A2, and A3 are overprovisioned (44.736 Mbps).

The users belonging to classes 1–7 generate a total load of 30% on the bottle-

neck link and the bottleneck’s background traffic utilization is varied from 40%

to 65% to demonstrate the ability to identify this bottleneck under different

background traffic conditions.

Using the modified Kaiser’s rule described in Section 2.3.3, I correctly

determine that there is one significant factor for each utilization factor consid-

ered. Fig. 4.2 shows that the explanatory power of this single factor increases

as congestion increases on the bottleneck. Fig. 4.3 illustrates that at higher uti-

lization levels of the bottleneck link, the accuracy of inference is higher. Both

Figs. 4.2 and 4.3 show the effect of filtering out small flows, large flows, and

small and large flows simultaneously on the percentage of normalized variance

1If comparisons across different bottleneck configurations are desired, one can divide
squared error loss by p×m, the number of elements in the loading matrix.

59



accounted by the significant factor and on the squared error loss. We see that

filtering out small flows or large flows improves the explanatory power of the

factor and decreases the squared error loss. Note that increasing (decreasing)

the lower (higher) filtering threshold of flow sizes has significant benefits on

these measures. However, increasing (decreasing) the lower (higher) threshold

retains fewer flows and decreases the statistical accuracy of estimates. An

important observation is that omitting both small and large flows simultane-

ously significantly improves the explanatory power of the factor and decreases

the squared error loss. Retaining flows whose sizes are between 4 kB and 32

kB is a compromise between reliability of inference for resource sharing and

statistical accuracy of estimates.

4.3.3 Single bottleneck: Effect of class loads

Consider again the case in which link S1 (1.544 Mbps) is the bottle-

neck and access links A1, A2, and A3 are overprovisioned (44.736 Mbps). I

investigate the ability to identify this bottleneck for different total loads (20%,

30%, 40%) generated by users belonging to classes 1–7 on the bottleneck link

S1. Background traffic utilizes 50% of link S1.

Using the modified Kaiser’s rule, I successfully determine that there is

one significant factor when total class loads on the bottleneck link are greater

than or equal to 20%. Fig. 4.4 shows that the explanatory power of this

factor increases as congestion increases on the bottleneck. Fig. 4.5 illustrates

that at higher utilization levels, the accuracy of inference is higher. Again,
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kept at 30%.
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the single bottleneck. The total load due to classes 1–7 on S1 is kept at 30%.
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omitting both small and large flows simultaneously significantly improves the

explanatory power of the factor and decreases the squared error loss.

4.3.4 Single bottleneck: Effect of non-stationary traffic

I also investigate the effect of having non-stationary background traffic

for the single bottleneck case described in the previous subsections. The back-

ground traffic utilization of the bottleneck link changes between 60% and 40%

every 20 minutes over the period of 2 hours. Using the modified Kaiser’s rule,

I successfully determine that there is one significant factor with explanatory

power 71%. For this particular scenario, non-stationarity of the network traf-

fic does not seem to affect determination of resource sharing. Further analysis

may be required to assess the impact of non-stationarity of network traffic on

inference results.

4.3.5 Three bottlenecks

Consider the case in which links A1, A2, and A3 (each 1.544 Mbps)

are bottlenecks and link S1 is overprovisioned (44.736 Mbps). I investigate

the ability to identify these bottlenecks and associate each flow class with a

bottleneck for different loads (10%, 15%, 20%) generated by each class.

The background utilization on A1 and A2 (each serving two subnets)

is set to 50%. The background utilization on A3 (serving three subnets) is

adjusted so as to keep the total utilization on each bottleneck (A1, A2, and

A3) the same; i.e., the background utilization on A3 is 40%, 35%, and 30%
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1–7 on the single bottleneck S1. The utilization of S1 due to background traffic
is kept at 50%.
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Figure 4.5: Squared error loss under different total loads from classes 1–7 on
the single bottleneck S1. The utilization of S1 due to background traffic is
kept at 50%.
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corresponding to 10%, 15%, and 20% loads offered by each class, respectively.

From the generated records, I successfully determine that there are three sig-

nificant factors when loads generated by each class are greater than or equal

to 10%. Furthermore, I correctly identify which flow classes share congested

resources: I find that the throughputs of flow classes from subnets 1 and 2

have the largest loading with factor 1, the throughputs of flow classes from

subnets 3 and 4 have the largest loading with factor 2, and the throughputs

of flow classes from subnets 5, 6 and 7 have the largest loading with factor 3.

These factors are interpreted as the access links A1, A2, and A3, respectively.

Fig. 4.6 shows that the explanatory power of the three factors increases as

congestion increases on the bottlenecks. Fig. 4.7 illustrates that at higher uti-

lization factors, the factor loadings distinguish which factor a flow class is most

associated with more easily. As in the previous cases, omitting both small and

large flows simultaneously significantly improves the explanatory power of the

factors and decreases the squared error loss.

4.4 Interaction of Coupled Flow Classes

Recall that Section 3.6.2 described a linear network topology. I argued

that when the load offered by a flow class traversing multiple bottlenecks and

interacting with the cross traffic in both resources was low, either no or only

weak correlation was introduced between flow classes not sharing a resource

due to the coupled bottlenecks. In this section, I show how factor analysis

identifies bottlenecks on an example scenario given in Fig. 4.8. Users belonging
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the classes 1–7 for the three-bottleneck scenario. The total utilization factors
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Figure 4.8: Linear network topology with two coupled bottleneck links used
in OPNET TCP simulations.

to subnet 1 (class 1) download files from server 1, users belonging to subnet 2

(class 2) download files from server 2, and users belonging to subnet 3 (class

3) download files from server 3. Class 1 offers a load of 20% on the bottleneck

link 1 and 2. Class 2 offers a load of 40% on the bottleneck link 1. Class 3

offers a load of 40% on the bottleneck link 2. The load due to background

traffic on the bottlenecks 1 and 2 is set to 20%.

After filtering out flows whose sizes are smaller than 4 kB or greater

than 32 kB, I find that there are two significant factors. Then, I estimate

factor loadings of four class throughputs based on two significant factors. I

first estimate factor loadings and specific factors based on (2.3), and then use
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varimax rotation [31] on Λ̂:

Λ̂∗ =




0.5011 0.7272
0.9570 −0.0041
−0.1143 0.9214


 ,

and

Ψ̂ = diag (0.2200, 0.0841, 0.1380) .

The explanatory power of the two factors is 85%. From the results, one can

see that the throughputs of classes 2 and 3 are captured by only one factor, i.e.

the bottleneck link that each traverses. For class 1, one can argue that both

loadings are significant, and hence the throughputs of class 1 can be explained

by two factors, i.e. the two bottlenecks the flows belonging to class 1 visit.

This example scenario shows the effectiveness of factor analysis in identifying

multiple bottlenecks in a linear network.

4.5 Wireless Local Area Networks

Determination of the cause of poor performance in wireless local area

networks (WLANs) by using only flow level measurements is a challenging

problem. A set of wireless stations belonging to a basic service set (BSS) may

experience poor network service quality due to a number of reasons. Here,

the number of wireless users, frequency and mean size of file download re-

quests will be termed as the traffic patterns of wireless users. In wireless

networks, the spatial location of a user is also very important in determining

the perceived throughput performance. Often, the users experience poor per-

formance not because of the lower capacity of the wireless network compared
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to high-bandwidth wired technologies, but either because of an underprovi-

sioned backhaul link to the infrastructure network or because of bad coverage,

or misplacement, of the access point (AP) for a given spatial distribution of

users in the WLAN.

I apply the proposed factor analysis framework to determine the cause

of poor performance for users of FTP traffic in an IEEE 802.11b WLAN [48–

50], which is currently the most widely deployed WLAN technology. IEEE

802.11b WLANs support four different data rates, 11 Mbps, 5.5 Mbps, 2 Mbps,

and 1 Mbps, to compensate for the loss of signal strength when decoding data

packets. The wireless stations constantly detect signal strength and select the

best data rate at which they can operate accordingly. The signal strength

between an AP and a wireless station depends on the distance between them

and is significantly affected by obstructions along the signal’s propagation

path. IEEE 802.11b WLANs use carrier sense multiple access with collision

avoidance (CSMA/CA) mechanism to mediate access to the wireless channel.

This section considers two cases to demonstrate the power and ap-

plicability of flow level measurements and factor analysis in WLAN network

management. In the first case, a link in the provider’s network will be un-

derprovisioned for the traffic patterns of wireless users, and is the source of

congestion as shown in Fig. 4.9. I will suppose that the wireless network man-

agers do not have access to the utilization levels of the bottleneck link in the

provider’s network. In the second case, all links in the provider’s network

will be overprovisioned. However, the AP will not be optimally located with
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respect to wireless users as shown in Fig. 4.10. In this case, the AP will be

the bottleneck operating at a low data rate due to weak signal strength to the

users. In both cases, users generate equal load on the bottlenecked resource

(underprovisioned link or congested AP), and hence wireless users will perceive

the same (poor) average flow throughput performance.

4.5.1 Simulation setup

In the two cases considered in Figs. 4.9 and 4.10, the users download

files from a server using FTP. In each case, there are twenty wireless users in

the BSS. The users generate a load of 85% on the bottlenecked resource. I will

consider flows destined to wireless stations 1–4. In the first case, the access link

has a capacity of 1 Mbps. The average throughput received by each of these

stations is approximately 60 kbps. In the second case, the AP operates at a

data rate of 1 Mbps, which is the rate selected by the transceivers of wireless

stations due to weak signal strength. The average throughput received by each

of these stations is again approximately 60 kbps. Hence, in both cases, users

experience the same poor flow throughput performance.

Each simulation corresponds to 2 hours of file download activity. Dur-

ing the simulations, I record the request time, size (in bytes) and duration

(in seconds) of each file transfer. File transfer requests arrive according to a

Poisson distribution, and file sizes are selected from a lognormal distribution

with a mean file size of 16 kB and a standard deviation of 131 kB as before.

The conditional correlation matrix is estimated for the throughputs of four

69



Internet

Bottleneck

Access Point

Basic Service Set

File Server

Ether 10/100

10

100

12 805025632187654321COL

Power!

CiscoSystems
Cisco 7500 SERIES

Figure 4.9: A basic service set with twenty wireless users, only four users of
interest are shown. All stations can support data rates at 11 Mbps. The link
capacity is underprovisioned for the traffic patterns generated by wireless users.
Users are perceiving poor quality of service (throughput) due to congestion at
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Figure 4.10: A basic service set with twenty wireless users, only four users of
interest are shown. The access point is not placed optimally with respect to
the spatial distribution of wireless users. Users are perceiving poor quality of
service (throughput) due to weak signal strengths at their positions.
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wireless stations (classes 1–4), and factor analysis is performed on the matrix.

4.5.2 Simulation results

In the first case, when the poor quality of service is due to a bottleneck

link in the infrastructure network, the eigenvalues of the conditional correlation

matrix of flow class throughputs are

{3.0254, 0.6139, 0.2066, 0.1541}.

Based on the modified Kaiser’s rule in Section 2.3.3, there is a single signif-

icant factor that accounts for most of the variability in throughputs. The

explanatory power of this single factor is 76%. It can be concluded that the

variability in flow class throughputs is mainly due to the way in which con-

gested link bandwidth is allocated to active flows.

In the second case, when the poor quality of service is due to a poorly

located AP, the eigenvalues of the conditional correlation matrix of flow class

throughputs are

{1.2571, 0.9530, 0.9416, 0.8484}.

Once again, based on the modified Kaiser’s rule, there are three significant

factors. The explanatory power of the three factors is 79%. Existence of more

than one common factor can be attributed to the congested AP that divides its

capacity among active users. As such, the variability of flow class throughput

of each user is mainly due to the way bandwidth is allocated to its active flows

at its own congested “path”. Therefore, existence of more than one common
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factor indicates that the poor performance is due to low data rates at which

wireless stations operate because of their poor locations with respect to the

AP.

4.5.3 Discussion: Traffic patterns versus spatial access patterns in
wireless networks

One can employ the methodology described in this dissertation to in-

vestigate the causes of poor performance perceived by wireless users when

downloading documents from a server. For instance, given that the flow source

addresses are available from records, upon collecting flow level measurements

at an AP of a BSS where poor throughputs are being reported, one can deter-

mine that the AP is not placed properly if multiple factors are determined to

be the source of variation in flow class throughputs. In this case, the owners

of the AP may relocate it to a better location. If there is one factor underly-

ing the variations in flow class throughputs, the network managers may then

request an increase of the provisioned capacity of the access links or deploy

additional APs to support the traffic patterns of wireless users.

4.6 Conclusion

This chapter presented an evaluation of using factor analysis to infer

which flow classes share congested resources through extensive TCP simula-

tions. The results showed that the methodology can be a very effective tool in

inferring path sharing by TCP flows and diagnosing problems that arise from
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bottleneck sharing. The benefit of filtering out small and large flows was inves-

tigated for flow records generated by simulation. Flow filtering thresholds were

determined empirically. The methodology was also validated for wireless local

area networks through simulations. A potential application involves assess-

ing wireless network performance for given traffic and spatial access patterns

based only on flow level measurements collected at an AP.

The next chapter will apply the inference methodology to real TCP

measurements. The results are expected to provide a realistic assessment of

the potential use of this methodology in performance analysis of real networks.
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Chapter 5

Case Studies Using Real TCP Flow

Measurements

5.1 Introduction

In this chapter, I apply factor analysis to actual TCP flow class through-

put correlation matrices. Flow class throughputs are obtained from TCP flow

records that are collected by networking equipment. A validation of the re-

source sharing results with real flow measurements is extremely hard, if not

impossible, since routing information about all the domains that flows visit and

the congestion status of the servers that provide the incoming traffic are not

available. However, bootstrap confidence intervals can be used to demonstrate

the statistical accuracy of the inference methodology.

Section 5.2 describes the datasets that are used in this chapter. Sec-

tion 5.3 applies the inference methodology to the real datasets. Section 5.4

concludes the chapter.

5.2 Description of Datasets

I use NetFlow [9] records collected at the border router of The Univer-

sity of Texas at Austin (UT Austin) on November 6, 2002, between 12:58 PM
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Table 5.1: Description of NetFlow datasets collected at UT Austin’s border
router.

Date Period TCP records
Dataset2002 11/6/2002 12:58 PM - 2:07 PM 5,173,385
Dataset2004 1/21/2004 12:58 PM - 1:26 PM 4,440,697

and 2:07 PM CST, and on January 21, 2004, between 12:58 PM and 1:26 PM

CST. The records that are collected in 2002 are referred to as Dataset2002, and

those that are collected in 2004 are referred to as DataSet2004. Dataset2002

consists of 5,173,385 TCP flow records out of a total of 5,866,602 flow records.

Dataset2004 consists of 4,440,697 TCP flow records out of a total of 6,556,674

flow records. The records contain both the incoming and outgoing traffic from

UT Austin. The IP addresses belonging to UT Austin were made anonymous

to protect privacy. Table 5.1 summarizes these datasets. Figs. 5.1–5.6 provide

some descriptive statistics for the TCP flows in Dataset2002 and Dataset2004.

The pie charts in Figs. 5.1 and 5.2 show the percent distribution of flow sizes in

packets. Percent distribution of flow lengths in seconds are shown in Figs. 5.3

and 5.4. The cumulative distribution functions in Figs. 5.5 and 5.6 provide

some insight into the flow size distributions in the datasets.

I assume that over a one-hour period, flow class throughputs can be

modelled as stationary processes. Furthermore, I assume that the packets

from a given TCP flow follow the same route1. Such assumptions, although

1This assumption is supported by the empirical measurements in [51].
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Figure 5.1: Percent distribution of flow sizes in packets for Dataset 2002.
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Figure 5.2: Percent distribution of flow sizes in packets for Dataset 2004.
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Figure 5.3: Percent distribution of flow lengths in seconds for Dataset 2002.
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Figure 5.4: Percent distribution of flow lengths in seconds for Dataset 2004.
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Figure 5.5: Cumulative distribution function of flow sizes in kB for Dataset
2002.
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Figure 5.6: Cumulative distribution function of flow sizes in kB for Dataset
2004.
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idealized, are not completely unrealistic for our one-hour long flow measure-

ments.

5.3 Methodology

In NetFlow records, the start time of a flow is the time of arrival of

the first packet in the flow, and the end time is the time of arrival of the last

packet in the flow. Since the time between the first and the last packet is

zero, flow throughput is not defined for flows consisting of one packet. Hence,

one-packet flows will be omitted. Based on the claims that are validated by

performed simulations in Chapters 3 and 4, I filter out all flow records whose

sizes are smaller than one threshold or larger than another threshold in order

to better capture the throughput correlations among flow classes. Based on

extensive empirical investigations, I find that flows whose sizes are between 8

kB and 64 kB can represent the dynamics in the network well for the datasets

at hand. In addition, in the Internet, packets belonging to flows that consist

of only a few packets can sometimes arrive back to back (or with a very small

inter-packet spacing). In this case, it is unreasonable to assume that such

large flow throughputs are typical for that flow class. Hence, I will also omit

all flows whose durations are shorter than one second.

I choose to analyze incoming traffic associated with AOL and HotMail,

since one can reasonably assume that traffic belonging to these CPs potentially

experience congestion at their source due to high demand for their content. I

define two flow classes for traffic from each provider: AOL1 and AOL2 (class
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Table 5.2: Mean of bootstrap replications and 95% confidence intervals for
eigenvalues of R based on Dataset2002.

Eigenvalue Mean Interval estimate
e1 1.7274 (1.5457, 1.7900)
e2 1.1562 (1.0861, 1.3206)
e3 0.8344 (0.7058, 0.9150)
e4 0.2785 (0.2194, 0.4458)

1 and class 2) from AOL, and HotMail1 and HotMail2 (class 3 and class 4)

from Microsoft Corporation. Assignment of flows into AOL1 or AOL2 (and

similarly for HotMail1 and HotMail2) is performed by randomly splitting all

flows from AOL (and HotMail) into two sets. That way, I can hypothesize

which classes share infrastructure on their path to UT Austin with reasonable

certainty.

5.3.1 Validation of methodology

First, I describe how to choose the number of significant factors. I esti-

mate 95% BCa confidence intervals for four eigenvalues of the class throughput

correlation matrix R. The results are shown in Table 5.2 for Dataset2002, and

in Table 5.3 for Dataset2004.

Once the confidence intervals for the eigenvalues are estimated, the

modified Kaiser’s rule for real data can be used to choose the significant eigen-

values: the eigenvalues whose confidence intervals lie below 1 are designated

as insignificant. Therefore, from Tables 5.2 and 5.3, there are two significant
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Table 5.3: Mean of bootstrap replications and 95% confidence intervals for
eigenvalues of R based on Dataset2004.

Eigenvalue Mean Interval estimate
e1 1.4287 (1.3646, 1.4786)
e2 1.0780 (1.0237, 1.1603)
e3 0.9094 (0.8230, 0.9690)
e4 0.5856 (0.5413, 0.6379)

factors; i.e., four classes share two different network infrastructures. The ex-

planatory power of the two factors is 72% in the case of Dataset2002 and 63%

in the case of Dataset2004.

After establishing the number of significant factors, I estimate factor

loadings of four class throughputs based on two significant factors. I first esti-

mate factor loadings and specific factors based on (2.3), and then use varimax

rotation on Λ̂. For DataSet2002,

Λ̂∗ =




0.7933 0.0711
0.7289 −0.1315
−0.0842 0.9088
0.0501 0.9240




and

Ψ̂ = diag (0.3656, 0.4514, 0.1669, 0.1437) .

For Dataset2004,

Λ̂∗ =




0.8378 −0.0451
0.8411 0.0044
0.0200 −0.7415
0.0260 −0.7351




and

Ψ̂ = diag (0.2961, 0.2926, 0.4497, 0.4589) .
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Table 5.4: Mean of bootstrap replications and 95% confidence intervals for
factor loadings based on Dataset2002.

Loading Mean Interval estimate
|Λ∗11| 0.7944 (0.7567, 0.8252)
|Λ∗12| 0.0761 (0.0036, 0.1688)
|Λ∗21| 0.7250 (0.6360, 0.7884)
|Λ∗22| 0.1331 (0.0235, 0.2401)
|Λ∗31| 0.0836 (0.0241, 0.1436)
|Λ∗32| 0.9110 (0.8564, 0.9362)
|Λ∗41| 0.0535 (0.0042, 0.1294)
|Λ∗42| 0.9250 (0.8806, 0.9483)

Next, 95% BCa confidence intervals for absolute values of eight rotated

factor loadings are computed. When computing confidence intervals for factor

loadings, one needs to take into account sign reversals of loadings and changes

in the order of factors across bootstrap samples. As such, I compute the

confidence intervals of the absolute values of loadings. I rearrange the order

of factors if such reordering results in a smaller ‖Λ̂∗ − Λ̂∗(b)‖, where Λ̂∗ is

estimated using (2.3) and varimax rotation, and Λ̂∗(b) is the estimate for Λ̂∗

using the bth bootstrap replication. The results are given in Table 5.4 for

DataSet2002 and in Table 5.5 for DataSet2004.

By inspecting the significant loadings on the loading matrix, we can

conclude that classes 1 and 2 (flows belonging to AOL) share factor 1, and

classes 3 and 4 (flows belonging to HotMail) share factor 2 with 95% confi-

dence. In this case, factor 1 would be interpreted as the networking infrastruc-

ture belonging to AOL, and factor 2 would be the networking infrastructure
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Table 5.5: Mean of bootstrap replications and 95% confidence intervals for
factor loadings based on Dataset2004.

Loading Mean Interval estimate
|Λ∗11| 0.8370 (0.8223, 0.8544)
|Λ∗12| 0.0478 (0.0034, 0.1312)
|Λ∗21| 0.8402 (0.8254, 0.8580)
|Λ∗22| 0.0303 (0.0000, 0.1296)
|Λ∗31| 0.0458 (0.0000, 0.0731)
|Λ∗32| 0.7395 (0.6314, 0.7879)
|Λ∗41| 0.0512 (0.0004, 0.0969)
|Λ∗42| 0.7316 (0.6207, 0.7737)

belonging to Microsoft Corporation.

5.3.2 Discussion of results

The potential power of this inference technique in root cause analysis

may be illustrated by considering the results in Tables 5.4 and 5.5. For ex-

ample, suppose that the users belonging to classes AOL1 and AOL2 at UT

Austin were experiencing poor performance (long download times), and UT

Austin’s network managers were capable of verifying that utilization of the lo-

cal network was low. Treating the external network as a “black box” (i.e., no

knowledge about the utilization factors of access links or routing information

of outside network), network managers could infer that poor performance was

not due to the access links connecting UT Austin to the Internet, because the

flow classes did not have one common factor that would indicate a bottleneck

shared by all classes. The network managers could then hypothesize that the
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cause for poor performance was either at the CP’s server or a bottleneck link

visited by both flow classes in the Internet.

5.4 Conclusion

This chapter analyzed real TCP flow records collected at the border

router of UT Austin by using factor analysis. The algorithm developed to

infer resource sharing from flow records is summarized in Table 5.6. The

methods identify TCP flow classes that share network infrastructure with 95%

confidence. The applicability of the methodology to real data has a potential

impact on designing network monitoring tools for investigating root cause of

poor network performance. The application of factor analysis to real network

measurements to infer network properties is, to the best of my knowledge, a

novel idea.

Although the results presented in this chapter are quite encouraging,

future research is required to further investigate the validity of the method-

ology in the constantly changing and evolving Internet. Some suggestions for

possible future research directions are included in Chapter 6.
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Table 5.6: Algorithm to infer resource sharing from flow records.

1: Define the flow classes of interest, C

2: Set the flow filtering thresholds:
Tpackets, Tduration, T lower

bytes , and T upper
bytes

3: Determine the flows F that belong to C and satisfy
number of packets in flow > Tpackets

flow duration > Tduration

T lower
bytes < number of bytes in flow < T upper

bytes

4: Compute flow class throughputs using (3.3)
5: Discretize time and estimate pairwise correlations using (3.8)
6: Find the number of factors m using the eigenvalues of

the correlation matrix in (3.9) and the modified Kaiser’s rule
7: Perform factor analysis based on m factors
8: Rotate factor loadings using varimax rotation
9: Determine which flow classes have the largest loading on

a given factor: These classes are likely to share a congested resource
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Chapter 6

Conclusion

6.1 Summary

This dissertation introduces a new flow level approach to network to-

mography that infers which flow classes share congested resources. I develop

a methodology to analyze correlations of flow class throughputs from tempo-

ral observations. This new methodology for flow level network tomography is

based on my thesis statement:

The correlation structure of throughputs obtained by flow level mea-

surements for a number of TCP flow classes can often be captured

by a fewer number of latent factors that can be used to infer which

flow classes share resources in the network.

The research presented in this dissertation validates this statement

through the use of exploratory factor analysis on conditionally sampled flow

class throughputs. Filtering out flows based on their sizes has also been shown

to be a necessary step in preprocessing of flow records. Fig. 6.1 summarizes

the main steps of the inference methodology described. The figure also illus-

trates how the bootstrap can be used in conjunction with factor analysis to

make inferential statements about resource sharing.
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Flow Filtering
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Network
Tomography

Reduction
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Figure 6.1: Main steps of the introduced methodology for inferring resource
sharing.

A brief summary of the dissertation follows. Chapter 1 presented the

main motivations for ISPs and CPs for inferring resource sharing. Related

work was summarized and contrasted with the methods introduced in this

dissertation.

Chapter 2 provided a review of factor analysis and the bootstrap. Both

methods were the core techniques employed in this work.

Chapter 3 formalized the existence of correlation between throughputs

of flows that share a congested resource. A conditional sampling technique

was described to capture flow class throughput correlations. Factor analysis

was used on the correlation matrix to explore which flow classes might share

resources in the network. Flow filtering criteria were established to better

capture resource sharing in the network.
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Chapter 4 validated the developed methods by using extensive TCP

simulations. A number of traffic conditions and network topologies were used

to evaluate the effectiveness of factor analysis in identifying flows that shared

resources. The applicability of the methodology in wireless local area networks

was also considered. Factor analysis successfully determined whether the cause

of poor performance in a wireless local area network was due to traffic patterns

of wireless users or due to users’ spatial locations.

Chapter 5 coupled exploratory factor analysis with bootstrap methods

to make inferential statements about resource sharing based on the data at

hand. The methodology was validated using real TCP data. The applicability

of the methodology to real data may potentially impact the design of future

network monitoring tools.

I summarize the primary contributions of this dissertation:

• Methodology. I believe that the use of factor analysis in analyzing

network properties is a novel idea [25–27]. A distinctive feature of my

work is the consideration of the correlation structure of conditionally

sampled random processes (flow class throughputs) whose samples are

taken when the processes are active at the sampling instant. A very

recent work described in [52] also considers applying structural anal-

ysis techniques, principal component analysis in particular, to network

traffic measurements for examining the intrinsic dimensionality of origin-

destination flow time series in a network.
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• Empirical findings. Due to the constantly changing nature of user

behavior and the emergence of new applications, a thorough study of

distribution of flow sizes in the network and its impact on throughput

correlations is almost impossible. Based on an extensive set of empirical

studies, I present several flow filtering criteria based on flow sizes that

improve inference results for resource sharing. The methods are validated

with two distinct real datasets from UT Austin’s border router.

• Applications. The methodologies described in this dissertation for in-

ferring path sharing based on flow records can serve as a tool for network

monitoring and root cause analysis of poor performance.

6.2 Future Work

In this dissertation, I employed a series of simulations and two real

datasets to establish the validity of the presented methodology. However,

future work should further investigate the validity of the proposed methods

in the constantly changing and evolving Internet, perhaps through analysis of

more extensive datasets.

Future research on inferring network properties using flow level mea-

surements could focus on a variety of topics that are oriented towards address-

ing the open issues in this work. Examples include a further investigation of

filtering thresholds, the feasibility of an “overlap” based flow filtering strat-

egy, the use of active probe flows to infer network properties, and the effect of
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non-stationary network traffic on inferences.

Filtering out flows based on their sizes in bytes or packets, and on their

duration requires further research. In this work, I established flow filtering

criteria empirically. I believe that the nature of flow sizes and durations in

the Internet [53] is too complex and too dynamic, and determination of filter-

ing thresholds analytically is extremely difficult, if not impossible. However,

one could perform more experiments to devise “good” engineering rules for

selecting flow size or duration thresholds using datasets from several major

ISPs.

One can also rethink the flow filtering strategy. I argued that filtering

out flows based on their sizes was an effective strategy to capture throughput

correlations. As demonstrated in Chapter 3, the amount of overlap relative to

the duration of the longer flow is the key factor in determining the correlation

between flow throughputs. Although the implementation of such a strategy

may not be as straightforward as the size or duration based filtering, it may

be worthwhile to analyze the benefit of resorting to “overlap” based filtering

of flows.

A very interesting research problem involves investigating the use of

active probe flows to “learn” network properties. The techniques employed

in this dissertation are based on passively collected flow records. Extending

the methodology to an active measurement framework could be useful for end

systems that wish to perform on demand performance analysis of the network.

For example, in an active framework, the service provider could probe two or
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more users by sending a number of temporally overlapping flows to capture

the congestion state of the network routes between the provider and users. Es-

tablishing bounds on the number and size of probe flows that are required to

achieve accurate inferences without generating prohibitive probe traffic could

potentially be a significant contribution to network tomography research. Re-

call that filtering out small and large flows better captures throughput cor-

relations, but reduces the number of flows that are available for statistical

analysis. With an active probing strategy, flows with “proper” sizes can be

used to address the dilemma between discarding small and large flows and re-

taining enough samples for statistical analysis. Note that active measurements

can always be employed in conjunction with passive measurements for more

effective network monitoring.

In this work, I addressed the impact of non-stationarity of network

traffic on inferences for one particular topology. Network traffic is stationary

only over a few hours. One could investigate the effect of non-stationarity on

correlation estimates, and hence, on factor analysis for datasets that contain

measurements for longer periods of time. One approach to dealing with non-

stationarity may involve dividing the measurement period into segments [30,

54] over which the network traffic is stationary, and estimating correlations

among flow class throughputs over these segments separately.

In addition to further research that involves analysis, one could explore

new application areas for the introduced methodology. For example, proper

configuration and placement of access points in wireless local area networks
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poses a challenging problem, and is a topic of active research. Further eval-

uation of the use of factor analysis should be performed to investigate how

wireless users can be classified according to their traffic patterns and spatial

distributions based on flow level measurements.

In addition to the wireless local area networks, cellular networks are

increasingly carrying “document” traffic [55]. However, the major challenge

in cellular networks is the high mobility of users: Users might receive poor

performance due to their location for a brief period of time, and later, start

receiving acceptable performance as they move to a different location. In

this case, the throughput perceived by the users is mainly driven by their

mobility rather than the congestion control mechanisms. Conducting research

in applications of factor analysis in highly mobile cellular networks to analyze

flow level performance characteristics of users could be rewarding for cellular

service providers.

There is also an emerging interest in analyzing the performance of sen-

sor networks [56]. Sensor networks consist of a very large number of low-power,

low-cost devices, or sensors, that are interconnected with low-capacity links.

The sensors that are dispersed in an area collect various measurements of

their environment. The measurements are then propagated to a data process-

ing center. Propagating voluminous amounts of measurements towards a data

processing center (“measurement implosion”) is very likely to create hot spots

in the sensor network. By using factor analysis, one could identify which sen-

sor flows share hot spots. An investigation of the application of the introduced
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methods may provide useful guidelines in design and implementation of sensor

networks.

Finally, current network service billing mechanisms usually charge users

based on the amount of data they send and receive, the duration of connec-

tion to the network, or the size of the access ports, e.g. OC-3 (155.250 Mbps),

OC-12 (622.080 Mbps), etc. A usage based charging scheme based on flows

is described in [57]. I believe that throughput must also be a key factor in

determining the price that a user has to pay to the service provider. If the

users are experiencing poor quality of service (low throughput), and the cause

of poor performance is determined to be due to a bottleneck in the provider’s

network, users could get a discount in their bill to compensate for their dis-

satisfaction with the service. The methods presented in this dissertation may

provide the first step in determining the root causes of poor performance of

TCP flows, and should be easily integrable to user pricing mechanisms.
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